

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 1/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

Safety Data Sheet

According to Annex II to REACH - Regulation 2020/878 and to Annex II to UK REACH

SECTION 1. Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Code: M4111, M4167, M4180

Product name JOLLY - MASTICE PER MARMI - BIANCO

1.2. Relevant identified uses of the substance or mixture and uses advised against

Intended use Mastic for marble. For professional use only.

Uses related to the substances present:

Identified Uses Industrial Professional Consumer

Styrene - PROC: 1, 10, 11, 3, 4, 5, 8a.

Uses Advised Against

SU21: Consumer use

1.3. Details of the supplier of the safety data sheet

Name ILPA ADESIVI SRL
Full address Via Ferorelli, 4
District and Country 70132 BARI (BARI)

ITALIA

Tel. + 39 0805383837 Fax + 39 0805377807

e-mail address of the competent person

responsible for the Safety Data Sheet laboratorio@ilpa.it

1.4. Emergency telephone number

For urgent inquiries refer to + 39 0808974667 (Technical support - 8,00 - 17,00 - LUN-GIO; MON-THU; 8:00 - 13:00

VEN; FRI)(Italian Time zone)

Safety Executive (HSE) Chemicals Regulation Directorate 5S.1 Redgrave Court, Merton

Road, Bootle, Merseyside. L20 7HS.

Phone: +44 151 9513317

SECTION 2. Hazards identification

2.1. Classification of the substance or mixture

Revision nr. 1

Dated 27/01/2022
First compilation
Printed on 27/01/2022

Page n. 2/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

The product is classified as hazardous pursuant to the provisions set forth in (EC) Regulation 1272/2008 (CLP) (and subsequent amendments and supplements). The product thus requires a safety datasheet that complies with the provisions of (EU) Regulation 2020/878.

Any additional information concerning the risks for health and/or the environment are given in sections 11 and 12 of this sheet.

Hazard classification and indication:

Flammable liquid, category 3 H226 Flammable liquid and vapour.

Reproductive toxicity, category 2 H361d Suspected of damaging the unborn child.

Specific target organ toxicity - repeated exposure, category 1 H372 Causes damage to organs through prolonged or repeated

exposure.

Eye irritation, category 2 H319 Causes serious eye irritation.
Skin irritation, category 2 H315 Causes skin irritation.

Skin sensitization, category 1A H317 May cause an allergic skin reaction.

2.2. Label elements

Hazard labelling pursuant to EC Regulation 1272/2008 (CLP) and subsequent amendments and supplements.

Hazard pictograms:

Signal words: Danger

Hazard statements:

H226 Flammable liquid and vapour.

H361d Suspected of damaging the unborn child.

H372 Causes damage to organs through prolonged or repeated exposure.

H319 Causes serious eye irritation.
H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

Precautionary statements:

P201 Obtain special instructions before use.

P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.

P260 Do not breathe dust / fume / gas / mist / vapours / spray.
P280 Wear protective gloves / eye protection / face protection.
P308+P313 IF exposed or concerned: Get medical advice / attention.

P370+P378 In case of fire: useuse carbon dioxide, foam, chemical powder to extinguish.

Contains: STYRENE

MALEIC ANHYDRIDE

Product not intended for uses provided for by Directive 2004/42/EC.

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 3/23

M4111 - JOLLY - MASTICE PER MARMI -**BIANCO**

2.3. Other hazards

On the basis of available data, the product does not contain any PBT or vPvB in percentage ≥ than 0,1%.

The product does not contain substances with endocrine disrupting properties in concentration >= 0.1%.

SECTION 3. Composition/information on ingredients

3.2. Mixtures

Contains:

Identification Classification (EC) 1272/2008 (CLP) x = Conc. %

STYRENE

CAS 100-42-5 $12 \le x < 13.5$ Flam. Lig. 3 H226, Repr. 2 H361d, Acute Tox. 4 H332, STOT RE 1 H372.

Asp. Tox. 1 H304, Eye Irrit. 2 H319, Skin Irrit. 2 H315, STOT SE 3 H335,

Aquatic Chronic 3 H412, Classification note according to Annex VI to the CLP

Regulation: D

EC 202-851-5 LC50 Inhalation vapours: 11,8 mg/l/4h

INDEX 601-026-00-0

REACH Reg. 01-2119457861-32

ETHYL ACETATE

CAS 141-78-6 $0 \le x < 0.05$ Flam. Liq. 2 H225, Eye Irrit. 2 H319, STOT SE 3 H336, EUH066

EC 205-500-4

INDEX 607-022-00-5

REACH Reg. 01-2119475103-46

MALEIC ANHYDRIDE

CAS 108-31-6 $0,001 \le x < 0,05$ Acute Tox. 4 H302, STOT RE 1 H372, Skin Corr. 1B H314, Eye Dam. 1

H318, Resp. Sens. 1 H334, Skin Sens. 1A H317, EUH071

EC 203-571-6 Skin Sens. 1A H317: ≥ 0,001%

INDEX 607-096-00-9 LD50 Oral: 400 mg/kg

REACH Reg. 01-2119472428-31-

XXXX

DIPROPYLENE GLYCOL MONOMETHYL ETHER

 $0 \le x < 0.05$ CAS 34590-94-8 Substance with a community workplace exposure limit.

EC 252-104-2

INDEX -

REACH Reg. 01-2119450011-60-

XXXX

The full wording of hazard (H) phrases is given in section 16 of the sheet.

SECTION 4. First aid measures

4.1. Description of first aid measures

EYES: Remove contact lenses, if present. Wash immediately with plenty of water for at least 30-60 minutes, opening the eyelids fully. Get medical

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 4/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

advice/attention.

SKIN: Remove contaminated clothing. Rinse skin with a shower immediately. Get medical advice/attention.

INGESTION: Have the subject drink as much water as possible. Get medical advice/attention. Do not induce vomiting unless explicitly authorised by a doctor.

INHALATION: Get medical advice/attention immediately. Remove victim to fresh air, away from the accident scene. If the subject stops breathing, administer artificial respiration. Take suitable precautions for rescue workers.

PROTECTIVE MEASURES FOR THE FIRST RESCUE WORKERS: for PPE (personal protection equipment) required for first aid refer to section 8.2 of this safety data sheet.

4.2. Most important symptoms and effects, both acute and delayed

Specific information on symptoms and effects caused by the product are unknown.

4.3. Indication of any immediate medical attention and special treatment needed

Information not available

SECTION 5. Firefighting measures

5.1. Extinguishing media

SUITABLE EXTINGUISHING EQUIPMENT

Extinguishing substances are: carbon dioxide, foam, chemical powder. For product loss or leakage that has not caught fire, water spray can be used to disperse flammable vapours and protect those trying to stem the leak.

UNSUITABLE EXTINGUISHING EQUIPMENT

Do not use jets of water. Water is not effective for putting out fires but can be used to cool containers exposed to flames to prevent explosions.

5.2. Special hazards arising from the substance or mixture

HAZARDS CAUSED BY EXPOSURE IN THE EVENT OF FIRE

Excess pressure may form in containers exposed to fire at a risk of explosion. Do not breathe combustion products.

5.3. Advice for firefighters

GENERAL INFORMATION

Use jets of water to cool the containers to prevent product decomposition and the development of substances potentially hazardous for health. Always wear full fire prevention gear. Collect extinguishing water to prevent it from draining into the sewer system. Dispose of contaminated water used for extinction and the remains of the fire according to applicable regulations.

SPECIAL PROTECTIVE EQUIPMENT FOR FIRE-FIGHTERS

Normal fire fighting clothing i.e. fire kit (BS EN 469), gloves (BS EN 659) and boots (HO specification A29 and A30) in combination with self-contained open circuit positive pressure compressed air breathing apparatus (BS EN 137).

SECTION 6. Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Block the leakage if there is no hazard.

Wear suitable protective equipment (including personal protective equipment referred to under Section 8 of the safety data sheet) to prevent any contamination of skin, eyes and personal clothing. These indications apply for both processing staff and those involved in emergency procedures.

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 5/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

Send away individuals who are not suitably equipped. Use explosion-proof equipment. Eliminate all sources of ignition (cigarettes, flames, sparks, etc.) from the leakage site.

6.2. Environmental precautions

The product must not penetrate into the sewer system or come into contact with surface water or ground water.

6.3. Methods and material for containment and cleaning up

Collect the leaked product into a suitable container. Evaluate the compatibility of the container to be used, by checking section 10. Absorb the remainder with inert absorbent material.

Make sure the leakage site is well aired. Contaminated material should be disposed of in compliance with the provisions set forth in point 13.

6.4. Reference to other sections

Any information on personal protection and disposal is given in sections 8 and 13.

SECTION 7. Handling and storage

7.1. Precautions for safe handling

Keep away from heat, sparks and naked flames; do not smoke or use matches or lighters. Without adequate ventilation, vapours may accumulate at ground level and, if ignited, catch fire even at a distance, with the danger of backfire. Avoid bunching of electrostatic charges. Do not eat, drink or smoke during use. Remove any contaminated clothes and personal protective equipment before entering places in which people eat. Avoid leakage of the product into the environment.

7.2. Conditions for safe storage, including any incompatibilities

Store only in the original container. Store in a cool and well ventilated place, keep far away from sources of heat, naked flames and sparks and other sources of ignition. Keep containers away from any incompatible materials, see section 10 for details.

7.3. Specific end use(s)

No use other than specified in Section 1.2 of this safety data sheet.

SECTION 8. Exposure controls/personal protection

8.1. Control parameters

Regulatory References:

DEU	Deutschland	Technischen Regeln für Gefahrstoffe (TRGS 900) - Liste der Arbeitsplatzgrenzwerte und Kurzzeitwerte.
		MAK- und BAT-Werte-Liste 2020, Ständige Senatskommission zur Prüfung gesundheitsschädlicher
		Arbeitsstoffe, Mitteilung 56
ESP	España	Límites de exposición profesional para agentes químicos en España 2021
FRA	France	Valeurs limites d'exposition professionnelle aux agents chimiques en France. ED 984 - INRS
GRC	Ελλάδα	Π.Δ. 26/2020 (ΦΕΚ 50/Α` 6.3.2020) Εναρμόνιση της ελληνικής νομοθεσίας προς τις διατάξεις των οδηγιών
		2017/2398/EE, 2019/130/EE και 2019/983/EE «για την τροποποίηση της οδηγίας 2004/37/EK ``σχετικά με
		την προστασία των εργαζομένων από τους κινδύνους που συνδέονται με την έκθεση σε καρκινογόνους ή
		μεταλλαξιγόνους παράγοντες κατά την εργασία``»
HRV	Hrvatska	Pravilnik o izmjenama i dopunama Pravilnika o zaštiti radnika od izloženosti opasnimkemikalijama na radu,

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 6/23

M4111 - JOLLY - MASTICE PER MARMI -**BIANCO**

ITA NLD Italia Nederland

România

PRT

ROU

GBR EU

graničnim vrijednostima izloženosti i biološkim graničnim vrijednostima (NN 1/2021)

Decreto Legislativo 9 Aprile 2008, n.81

Arbeidsomstandighedenregeling. Lijst van wettelijke grenswaarden op grond van de artikelen 4.3, eerste lid, en 4.16, eerste lid, van het Arbeidsomstandighedenbesluit

Decreto-Lei n.º 1/2021 de 6 de janeiro, valores-limite de exposição profissional indicativos para os agentes químicos. Decreto-Lei n.º 35/2020 de 13 de julho, proteção dos trabalhadores contra os riscos ligados à Portugal

exposição durante o trabalho a agentes cancerígenos ou mutagénicos

Hotărârea nr. 53/2021 pentru modificarea hotărârii guvernului nr. 1.218/2006, precum și pentru modificarea și completarea hotărârii guvernului nr. 1.093/2006

United Kingdom OEL EU

mg/m3

ppm

mg/m3

ppm

EH40/2005 Workplace exposure limits (Fourth Edition 2020)
Directive (EU) 2019/1831; Directive (EU) 2019/130; Directive (EU) 2019/983; Directive (EU) 2017/164; Directive (EU) 2019/180; Directive 2006/15/EC; Directive 2004/37/EC; Directive 2000/39/EC; Directive 98/24/EC; Directive 91/322/EEC.

TLV-ACGIH ACGIH 2020

Туре	Country	TWA/8h		STEL/15min		Remarks / Observation		
		mg/m3	ppm	mg/m3	ppm			
MAK	DEU	86	20	172	40			
VLA	ESP	86	20	172	40			
VLEP	FRA	100	23,3	200	46,6			
TLV	GRC	425	100	1050	250			
GVI/KGVI	HRV	430	100	1080	250	SKIN		
TGG	NLD	107						
TLV	ROU	50	12	150	35			
WEL	GBR	430	100	1080	250			
TLV-ACGIH		10		20				
Predicted no-effect concentration	on - PNEC							
Normal value in fresh water				0,028	mį	g/l		
Normal value in marine water				0,014	mg	g/l		
Normal value for fresh water se	diment			0,614	mg	g/kg/d		
Normal value for marine water	sediment			0,0614	mg/kg/d			
Normal value for water, intermit	tent release			0,04	mg/l			
Normal value of STP microorga	inisms			5	mg	g/l		
Normal value for the terrestrial	compartment			0,2	mç	g/kg/d		
Health - Derived no-effect	level - DNEL / D	MEL						
	Effects on consumers				Effects on workers			
Route of exposure	Acute local	Acute systemic	Chronic local	Chronic systemic	Acute local	Acute systemic	Chronic local	Chronic systemic
Oral			VND	2,1 mg/kg		Systemic		Systemic
Inhalation	182,75 mg/m3	174,25 mg/m3	VND	bw/d 10,2 mg/m3	306 mg/m3	289 mg/m3	VND	85 mg/m3
Skin	102,10 mg/mo	1,20 mg/mo	VND	343 mg/kg bw/d	550 mg/m	200 mg/mo	VND	406 mg/kg bw/d
ETHYL ACETATE								
Threshold Limit Value Type	Country	TWA/8h		STEL/15min		Remarks / Observation		
		1 0		, ,				

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

M4111 - JOLLY - MASTICE PER MARMI -BIANCO

DEU DEU ESP FRA GRC HRV NLD PRT GBR	730 750 734 734 734 734 734	200 200 200 200 200 200	1460 1500 1468 1468 1468 1468	400 400 400 400 400 400			
DEU ESP FRA GRC HRV NLD PRT	750 734 734 734 734 734	200 200 200 200 200	1500 1468 1468 1468	400 400 400 400			
ESP FRA GRC HRV NLD PRT	734 734 734 734 734	200 200 200	1468 1468 1468	400 400 400			
FRA GRC HRV NLD PRT	734 734 734 734	200	1468 1468	400			
GRC HRV NLD PRT	734 734 734	200	1468	400			
HRV NLD PRT	734 734						
NLD PRT	734	200	1468	400			
PRT							
	70.4		1468				
GBR	734	200	1468	400			
	734	200	1468	400			
EU	734	200	1468	400			
	1441	400					
n - PNEC							
			0,24	mg/	1		
			0,024	mg/	1		
diment			1,15	mg/	kg/d		
ediment			0,115	mg/	kg/d		
ent release			1,65	mg/	1		
nisms			650	mg/	1		
(secondary poison	ing)		200	mg/	kg		
Normal value for the terrestrial compartment					kg/d		
е			NPI				
Effects on	OMEL			Effects on			
Acute local	Acute systemic	Chronic local	Chronic systemic	Acute local	Acute systemic	Chronic local	Chronic systemic
		VND	4,5 mg/kg bw/d				
734 mg/m3	734 mg/m3	367 mg/m3	367 mg/m3	1468 mg/m3	1468 mg/m3	734 mg/m3	734 mg/m3
		VND	37 mg/kg bw/d			VND	63 mg/kg bw/d
	n - PNEC diment sediment sent release nisms (secondary poisor compartment e level - DNEL / I Effects on consumers Acute local	diment diment dediment dent release nisms (secondary poisoning) compartment e level - DNEL / DMEL Effects on consumers Acute local Acute systemic	1441 400 n - PNEC diment sediment sed	1441 400	1441 400	1441 400	1441 400 1441 400 1441 400 1441 400 1441 400 1441 400 1441 400 1441 400 40

Threshold Limit Valu	ıe						
Туре	Country	TWA/8h		STEL/15min		Remarks / Observations	
		mg/m3	ppm	mg/m3	ppm		
AGW	DEU	0,081	0,02	0,081 (C)	0,02 (C)		
MAK	DEU	0,081	0,02	0,081 (C)	0,02 (C)		C = 0,20 mg/m3
VLA	ESP	0,4	0,1				
VLEP	FRA			1			
TLV	GRC	1					
GVI/KGVI	HRV	0,41	0,1	0,8	0,2	INHAL	
GVI/KGVI	HRV	0,41	0,1	0,8	0,2	SKIN	
TLV	ROU	1	0,25	3	0,75		
WEL	GBR	1		3			

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

M4111 - JOLLY - MASTICE PER MARMI -**BIANCO**

						Pag	e n. 8/23	
	,					·		
Predicted no-effect conce	entration - PNEC							
Normal value in fresh wat	ter			0,075	m	g/l		
Normal value in marine water				0,0075	m	g/l		
Normal value for fresh wa	ater sediment			0,06	mç	g/kg		
Normal value for marine v	water sediment			0,006	mç	g/kg		
Normal value for water, ir	ntermittent release			48,1	m	g/l		
Normal value of STP mic	roorganisms			4,46	m	g/l		
Normal value for the food	I chain (secondary poison	ning)		6,67	m	g/kg		
Normal value for the terre	estrial compartment			0,01	mg	g/kg		
Health - Derived no-e	effect level - DNEL / DEFFects on consumers	OMEL			Effects on workers			
Route of exposure	Acute local	Acute systemic	Chronic local	Chronic systemic	Acute local	Acute systemic	Chronic local	Chronic systemic
Oral		0,1 mg/kg bw/d		0,06 mg/kg		Systemic		Systemic
Inhalation			0,08 mg/m3	0,05 mg/m3	0,8 mg/m3	0,8 mg/m3	0,32 mg/m3	0,19 mg/m3
		0,1 mg/kg bw/d		0,1 mg/kg bw/d		0,2 mg/kg bw/d		0,2 mg/kg bw/d
Skin	COL MONOMETHYL	ETHER						
DIPROPYLENE GLY		ETHER TWA/8h		STEL/15min		Remarks Observat		
DIPROPYLENE GLYO	ie		ppm		ppm			
DIPROPYLENE GLYO Threshold Limit Valu Type	ie	TWA/8h	ppm 50	STEL/15min	ppm 50			
DIPROPYLENE GLY0 Threshold Limit Valu Type AGW	Country	TWA/8h mg/m3		STEL/15min mg/m3				
DIPROPYLENE GLYO Threshold Limit Valu Type AGW MAK	Country DEU	TWA/8h mg/m3	50	STEL/15min mg/m3 310	50			
DIPROPYLENE GLYC Threshold Limit Valu Type AGW MAK VLA	Country DEU DEU	TWA/8h mg/m3 310 310	50 50	STEL/15min mg/m3 310	50	Observat		
DIPROPYLENE GLY(Threshold Limit Value Type AGW MAK VLA VLEP	DEU DEU ESP	TWA/8h mg/m3 310 310 308	50 50 50	STEL/15min mg/m3 310	50	Observat SKIN		
DIPROPYLENE GLY(Threshold Limit Value Type AGW MAK VLA VLEP TLV	DEU DEU ESP FRA	TWA/8h mg/m3 310 310 308 308	50 50 50 50	STEL/15min mg/m3 310 310	50 50	Observat SKIN		
DIPROPYLENE GLY(Threshold Limit Value Type AGW MAK VLA VLEP TLV GVI/KGVI	DEU DEU ESP FRA GRC	TWA/8h mg/m3 310 310 308 308 600	50 50 50 50 50	STEL/15min mg/m3 310 310	50 50	Observat SKIN SKIN		
DIPROPYLENE GLYC Threshold Limit Valu Type AGW MAK VLA VLEP TLV GVI/KGVI VLEP	DEU DEU ESP FRA GRC HRV	TWA/8h mg/m3 310 310 308 308 600 308	50 50 50 50 50 100 50	STEL/15min mg/m3 310 310	50 50	SKIN SKIN		
DIPROPYLENE GLYC Threshold Limit Valu Type AGW MAK VLA VLEP TLV GVI/KGVI VLEP	DEU DEU ESP FRA GRC HRV	TWA/8h mg/m3 310 310 308 308 600 308 308	50 50 50 50 50 100 50	STEL/15min mg/m3 310 310	50 50	SKIN SKIN		
DIPROPYLENE GLY(Threshold Limit Value Type AGW MAK VLA VLEP TLV GVI/KGVI VLEP TGG	DEU DEU ESP FRA GRC HRV ITA NLD	TWA/8h mg/m3 310 310 310 308 308 600 308 308 308	50 50 50 50 100 50	STEL/15min mg/m3 310 310	50 50	SKIN SKIN SKIN SKIN		
DIPROPYLENE GLY(Threshold Limit Value Type AGW MAK VLA VLEP TLV GVI/KGVI VLEP TGG VLE TLV	DEU DEU ESP FRA GRC HRV ITA NLD PRT	TWA/8h mg/m3 310 310 308 308 600 308 308 308 308 30	50 50 50 50 100 50 50	STEL/15min mg/m3 310 310	50 50	SKIN SKIN SKIN SKIN		
DIPROPYLENE GLY(Threshold Limit Value Type AGW MAK VLA VLEP TLV GVI/KGVI VLEP TGG VLE TLV WEL	DEU DEU ESP FRA GRC HRV ITA NLD PRT ROU	TWA/8h mg/m3 310 310 310 308 308 600 308 308 300 308 308	50 50 50 50 100 50 50 50	STEL/15min mg/m3 310 310	50 50	SKIN SKIN SKIN SKIN SKIN		
DIPROPYLENE GLYC Threshold Limit Value Type AGW MAK VLA VLEP TLV GVI/KGVI VLEP TGG VLE TLV WEL OEL	DEU DEU DEU ESP FRA GRC HRV ITA NLD PRT ROU GBR EU	TWA/8h mg/m3 310 310 310 308 308 600 308 308 300 308 308	50 50 50 50 100 50 50 50 50 50	STEL/15min mg/m3 310 310	50 50	SKIN SKIN SKIN SKIN SKIN SKIN SKIN		
DIPROPYLENE GLYC Threshold Limit Value Type AGW MAK VLA VLEP TLV GVI/KGVI VLEP TGG	DEU DEU DEU ESP FRA GRC HRV ITA NLD PRT ROU GBR EU entration - PNEC	TWA/8h mg/m3 310 310 310 308 308 600 308 308 300 308 308	50 50 50 50 100 50 50 50 50 50	STEL/15min mg/m3 310 310	50 50	SKIN SKIN SKIN SKIN SKIN SKIN SKIN SKIN		
DIPROPYLENE GLY(Threshold Limit Value Type AGW MAK VLA VLEP TLV GVI/KGVI VLEP TGG VLE TLV WEL OEL Predicted no-effect conce	DEU DEU ESP FRA GRC HRV ITA NLD PRT ROU GBR EU entration - PNEC	TWA/8h mg/m3 310 310 310 308 308 600 308 308 300 308 308	50 50 50 50 100 50 50 50 50 50	STEL/15min mg/m3 310 310 900	50 50 150	SKIN SKIN SKIN SKIN SKIN SKIN SKIN		

7,02

190

4168

2,74

mg/kg

mg/l

mg/l

mg/kg

Health - Derived no-effect level - DNEL / DMEL

Normal value for marine water sediment

Normal value of STP microorganisms

Normal value for water, intermittent release

Normal value for the terrestrial compartment

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 9/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

	Effects on consumers				Effects on workers			
Route of exposure	Acute local	Acute systemic	Chronic local	Chronic systemic	Acute local	Acute systemic	Chronic local	Chronic systemic
Oral				1,67 mg/kg bw/d				
Inhalation				37,2 mg/m3				310 mg/m3
Skin				15 mg/kg bw/d				65 mg/kg bw/d

Legend:

(C) = CEILING; INHAL = Inhalable Fraction; RESP = Respirable Fraction; THORA = Thoracic Fraction.

VND = hazard identified but no DNEL/PNEC available ; NEA = no exposure expected ; NPI = no hazard identified.

8.2. Exposure controls

As the use of adequate technical equipment must always take priority over personal protective equipment, make sure that the workplace is well aired through effective local aspiration.

When choosing personal protective equipment, ask your chemical substance supplier for advice.

Personal protective equipment must be CE marked, showing that it complies with applicable standards.

Provide an emergency shower with face and eye wash station.

Exposure levels must be kept as low as possible to avoid significant build-up in the organism. Manage personal protective equipment so as to guarantee maximum protection (e.g. reduction in replacement times).

HAND PROTECTION

Protect hands with category III work gloves (see standard EN 374).

The following should be considered when choosing work glove material: compatibility, degradation, failure time and permeability.

The work gloves' resistance to chemical agents should be checked before use, as it can be unpredictable. The gloves' wear time depends on the duration and type of use.

SKIN PROTECTION

Wear category III professional long-sleeved overalls and safety footwear (see Regulation 2016/425 and standard EN ISO 20344). Wash body with soap and water after removing protective clothing.

Consider the appropriateness of providing antistatic clothing in the case of working environments in which there is a risk of explosion.

EYE PROTECTION

Wear airtight protective goggles (see standard EN 166).

In the presence of risks of exposure to splashes or squirts during work, adequate mouth, nose and eye protection should be used to prevent accidental absorption.

RESPIRATORY PROTECTION

If the threshold value (e.g. TLV-TWA) is exceeded for the substance or one of the substances present in the product, use a mask with a type A filter whose class (1, 2 or 3) must be chosen according to the limit of use concentration. (see standard EN 14387). In the presence of gases or vapours of various kinds and/or gases or vapours containing particulate (aerosol sprays, fumes, mists, etc.) combined filters are required.

Respiratory protection devices must be used if the technical measures adopted are not suitable for restricting the worker's exposure to the threshold values considered. The protection provided by masks is in any case limited.

If the substance considered is odourless or its olfactory threshold is higher than the corresponding TLV-TWA and in the case of an emergency, wear open-circuit compressed air breathing apparatus (in compliance with standard EN 137) or external air-intake breathing apparatus (in compliance with standard EN 138). For a correct choice of respiratory protection device, see standard EN 529.

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 10/23

M4111 - JOLLY - MASTICE PER MARMI -BIANCO

ENVIRONMENTAL EXPOSURE CONTROLS

The emissions generated by manufacturing processes, including those generated by ventilation equipment, should be checked to ensure compliance with environmental standards.

SECTION 9. Physical and chemical properties

9.1. Information on basic physical and chemical properties

Properties	Value	Information
Appearance	paste	
Colour	white	
Odour	characteristic of solvent	Remark:font: PUBCHEM (https://pubchem.ncbi.nlm.nih.gov) Concentration: 0,32 ppm %
		Substance:STYRENE
Melting point / freezing point	Not available	Substance:STYRENE Temperature: -30,7 °C
Initial boiling point	145 °C	Substance:STYRENE Temperature: 145 °C
Flammability	Not available	Remark:Limite inf. 1,2%vol Limite sup. 8,9%vol Substance:STYRENE
Lower explosive limit Upper explosive limit Flash point	Not applicable Not applicable 23 ≤ T ≤ 60 °C	Substance:STYRENE Substance:STYRENE
Auto-ignition temperature	490 °C	Remark:font: PUBCHEM (https://pubchem.ncbi.nlm.nih.gov) Substance:STYRENE
		Temperature: 490 °C
Decomposition temperature	Not applicable	
рН	Not applicable	Reason for missing data:solvent based
Kinematic viscosity	830000 mm2/s	product, insoluble in water. Remark:Kinematic viscosity>20,5 mm2/s, (at 40°C) Temperature: 25 °C
Dynamic viscosity Solubility	1500 ± 100 Pas water: 0,24 g/l; soluble in organic solvents. (STYRENE)	Temperature: 25 °C Substance:STYRENE
Partition coefficient: n-octanol/water	2,96	Remark:font: PUBCHEM (https://pubchem.ncbi.nlm.nih.gov) Concentration: Log Pow 2,96 %
		Substance:STYRENE
Vapour pressure	6,67 hPa	Remark:FONT: PUBCHEM (https://pubchem.ncbi.nlm.nih.gov) Substance:STYRENE
		Temperature: 20 °C
Density and/or relative density	1,8 kg/l	
Relative vapour density	3,6 (air=1)	Remark:FONT: PUBCHEM (https://pubchem.ncbi.nlm.nih.gov) Substance:STYRENE

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 11/23

M4111 - JOLLY - MASTICE PER MARMI -**BIANCO**

Particle characteristics

Not applicable

9.2. Other information

9.2.1. Information with regard to physical hazard classes

Information not available

9.2.2. Other safety characteristics

Not available Concentration: 0,49 (butyl acetate=1) % Evaporation rate

Substance:STYRENE

VOC (Directive 2010/75/EU) 12,72 % - 228,94 g/litre VOC (volatile carbon) 11,70 % - 210,66 g/litre Explosive properties

Product is not explosive. (STYRENE)

Oxidising properties not applicable

SECTION 10. Stability and reactivity

10.1. Reactivity

There are no particular risks of reaction with other substances in normal conditions of use.

STYRENE

Polymerises at temperatures above 65°C/149°F. Fire hazard. Possibility of explosion.

Added with an inhibitor that requires a small amount of dissolved oxygen at temperatures < 25°C/77°F.

ETHYL ACETATE

Decomposes slowly into acetic acid and ethanol under the effect of light, air and water.

DIPROPYLENE GLYCOL MONOMETHYL ETHER

Forms peroxides with: air.

10.2. Chemical stability

The product is stable in normal conditions of use and storage.

10.3. Possibility of hazardous reactions

The vapours may also form explosive mixtures with the air.

STYRENE

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 12/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

May react dangerously with: peroxides,strong acids.May polymerise on contact with: aluminium trichloride,azobisisobutyronitrile,dibenzoyl peroxide,sodium.Risk of explosion on contact with: butyllithium,chlorosulphuric acid,diterbutyl peroxide,oxidising substances,oxygen.

ETHYL ACETATE

Risk of explosion on contact with: alkaline metals,hydrides,oleum. May react violently with: fluorine, strong oxidising agents, chlorosulphuric acid, potassium tert-butoxide. Forms explosive mixtures with: air.

DIPROPYLENE GLYCOL MONOMETHYL ETHER

May react violently with: strong oxidising agents.

10.4. Conditions to avoid

Avoid overheating. Avoid bunching of electrostatic charges. Avoid all sources of ignition.

STYRENE

Avoid contact with: oxidising substances, copper, strong acids.

ETHYL ACETATE

Avoid exposure to: light, sources of heat, naked flames.

DIPROPYLENE GLYCOL MONOMETHYL ETHER

Avoid exposure to: sources of heat. Possibility of explosion.

10.5. Incompatible materials

STYRENE

Incompatible materials: plastic materials.

ETHYL ACETATE

Incompatible with: acids,bases,strong oxidants,aluminium,nitrates,chlorosulphuric acid.Incompatible materials: plastic materials.

10.6. Hazardous decomposition products

In the event of thermal decomposition or fire, gases and vapours that are potentially dangerous to health may be released.

SECTION 11. Toxicological information

In the absence of experimental data for the product itself, health hazards are evaluated according to the properties of the substances it contains, using the criteria specified in the applicable regulation for classification.

It is therefore necessary to take into account the concentration of the individual hazardous substances indicated in section 3, to evaluate the toxicological effects of exposure to the product.

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 13/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Metabolism, toxicokinetics, mechanism of action and other information

Information not available

Information on likely routes of exposure

STYRENE

WORKERS: inhalation; contact with the skin.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

STYRENE

The acute toxicity by inhalation at 1000 ppm affects the central nervous system with headache and dizziness, lack of coordination; irritation of the eye and respiratory tract mucous membranes occurs at 500 ppm. Chronic exposure causes depression of the central and peripheral nervous system with loss of memory, headache and drowsiness starting at 20 ppm; digestive disorders with nausea and loss of appetite; irritation of the respiratory tract with chronic bronchitis; dermatosis. Repeated exposure, at low doses of inhaled substance, causes irreversible changes to hearing and may cause changes in colour vision. No certain data is available on the reversibility of the visual impairment. Repeated skin exposure causes irritation. The substance degreases the skin, which can cause dryness and cracking.

Interactive effects

STYRENE

The metabolism of the substance is inhibited by ethanol. When styrene is photo-oxidised with ozone and nitrogen dioxide, as in the formation of smog, products highly irritating for the human eye may ensue.

ACUTE TOXICITY

ATE (Inhalation - vapours) of the mixture: > 20 mg/

ATE (Oral) of the mixture:

Not classified (no significant component)

ATE (Dermal) of the mixture:

Not classified (no significant component)

STYRENE

LD50 (Oral): 5000 mg/kg Rat (MSDS Supplier)
LD50 (Dermal): > 2000 mg/kg Rat (OECD Guideline 402)

LC50 (Inhalation vapours): 11,8 mg/l/4h Rat (Archives of Environmental Health 18: 878-882 - sito ECHA)

ETHYL ACETATE

LD50 (Oral): 4934 mg/kg Rabbit (Equivalent to OECD 401)

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 14/23

M4111 - JOLLY - MASTICE PER MARMI -BIANCO

LD50 (Dermal): 20000 mg/kg Rabbit (Publication Am Ind Hyg Ass J, 23, 95) LC50 (Inhalation vapours): 22,5 mg/l/6h Rat (40 CFR Part 799 (58 FR 40262))

MALEIC ANHYDRIDE

 LD50 (Oral):
 400 mg/kg Rat

 LD50 (Dermal):
 610 mg/kg Rat

DIPROPYLENE GLYCOL MONOMETHYL ETHER

 $\begin{array}{ll} \text{LD50 (Oral):} & > 5000 \text{ mg/kg RAT} \\ \text{LD50 (Dermal):} & > 9500 \text{ mg/kg RAT} \\ \end{array}$

SKIN CORROSION / IRRITATION

Causes skin irritation

SERIOUS EYE DAMAGE / IRRITATION

Causes serious eye irritation

RESPIRATORY OR SKIN SENSITISATION

Sensitising for the skin

Respiratory sensitization

Information not available

Skin sensitization

Information not available

GERM CELL MUTAGENICITY

Does not meet the classification criteria for this hazard class

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 15/23

M4111 - JOLLY - MASTICE PER MARMI -BIANCO

CARCINOGENICITY
Does not meet the classification criteria for this hazard class
STYRENE Classified in Group 2B (possible human carcinogen) by the International Agency for Research on Cancer (IARC) - (IARC, 2002). Classified as "probable carcinogen" by the US National Toxicology Program (NTP) - (US DHHS, 2014).
REPRODUCTIVE TOXICITY
Suspected of damaging the unborn child
Adverse effects on sexual function and fertility
Information not available
Adverse effects on development of the offspring
Information not available
Effects on or via lactation
Information not available
STOT - SINGLE EXPOSURE
Does not meet the classification criteria for this hazard class
<u>Target organ</u>
Information not available
Route of exposure

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 16/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

Information not available

STOT - REPEATED EXPOSURE

Causes damage to organs

Target organ

Information not available

Route of exposure

Information not available

ASPIRATION HAZARD

Does not meet the classification criteria for this hazard class Viscosity: 830000 mm2/s

11.2. Information on other hazards

Based on the available data, the product does not contain substances listed in the main European lists of potential or suspected endocrine disruptors with human health effects under evaluation.

SECTION 12. Ecological information

Use this product according to good working practices. Avoid littering. Inform the competent authorities, should the product reach waterways or contaminate soil or vegetation.

12.1. Toxicity

STYRENE

LC50 - for Fish

EC50 - for Crustacea

EC50 - for Algae / Aquatic Plants

Chronic NOEC for Crustacea

10 mg/l/96h Pimephales promelas (OECD Guideline 203, GLP)

4,7 mg/l/48h Daphnia magna (OECD Guideline 202, GLP)

4,9 mg/l/72h Selenastrum capricornutum (EPA OTS 797.1050, GLP)

1,01 mg/l/21d Daphnia magna (OECD Guideline 211, GLP)

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 17/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

ETHYL ACETATE

LC50 - for Fish 230 mg/l/96h Pimephales promelas (US EPA method E03-05)

EC50 - for Crustacea 165 mg/l/48h Dapnia (Rif. SDS fornitore)

Chronic NOEC for Crustacea 100 mg/l Scenedesmus subspicatus (OECD Guideline 201, GLP)

12.2. Persistence and degradability

DIPROPYLENE GLYCOL MONOMETHYL

ETHER

Solubility in water 1000 - 10000 mg/l

Rapidly degradable

STYRENE

Solubility in water 320 mg/l

Rapidly degradable

10 d, 68% according to (ISO DIS 9408)

ETHYL ACETATE

Solubility in water > 10000 mg/l

Rapidly degradable

(Publication JWPCF 46(1), p63-77)

MALEIC ANHYDRIDE

Solubility in water > 10000 mg/l

Entirely degradable

12.3. Bioaccumulative potential

DIPROPYLENE GLYCOL MONOMETHYL

ETHER

Partition coefficient: n-octanol/water 0,0043

STYRENE

Partition coefficient: n-octanol/water 2,96 BCF 74

ETHYL ACETATE

Partition coefficient: n-octanol/water 0,68 BCF 30

MALEIC ANHYDRIDE

Partition coefficient: n-octanol/water -2,78

12.4. Mobility in soil

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 18/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

STYRENE

Partition coefficient: soil/water

352 (Section 4.3 of Chapter on QSAR in the TGD)

12.5. Results of PBT and vPvB assessment

On the basis of available data, the product does not contain any PBT or vPvB in percentage ≥ than 0,1%.

12.6. Endocrine disrupting properties

Based on the available data, the product does not contain substances listed in the main European lists of potential or suspected endocrine disruptors with environmental effects under evaluation.

12.7. Other adverse effects

Information not available

SECTION 13. Disposal considerations

13.1. Waste treatment methods

Reuse, when possible. Product residues should be considered special hazardous waste. The hazard level of waste containing this product should be evaluated according to applicable regulations.

Disposal must be performed through an authorised waste management firm, in compliance with national and local regulations.

Waste transportation may be subject to ADR restrictions.

CONTAMINATED PACKAGING

Contaminated packaging must be recovered or disposed of in compliance with national waste management regulations.

SECTION 14. Transport information

14.1. UN number or ID number

ADR / RID, IMDG, IATA: 3269

14.2. UN proper shipping name

ADR / RID: POLYESTER RESIN KIT (contens: styrene) MIXTURE
IMDG: POLYESTER RESIN KIT (contens: styrene) MIXTURE
IATA: POLYESTER RESIN KIT (contens: styrene) MIXTURE

14.3. Transport hazard class(es)

ADR / RID: Class: 3 Label: 3

IMDG: Class: 3 Label: 3

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 19/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

IATA:

Class: 3

Label: 3

14.4. Packing group

ADR / RID, IMDG, IATA: III

14.5. Environmental hazards

ADR / RID: NO IMDG: NO IATA: NO

14.6. Special precautions for user

ADR / RID: HIN - Kemler: --

Limited Quantities: 5 L

Limited Quantities: 5 L

Tunnel restriction code: (E)

Special provision: -

IMDG: EMS: F-E, S-D

Cargo: Maximum quantity: 10 Kg

Pass.: Maximum quantity: 10 Kg

Pagial provision: AGE A4G2

Packaging instructions: 370
Packaging instructions: 370

Special provision: A66, A163

14.7. Maritime transport in bulk according to IMO instruments

Information not relevant

IATA:

SECTION 15. Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Seveso Category - Directive 2012/18/EU: P5c

Restrictions relating to the product or contained substances pursuant to Annex XVII to EC Regulation 1907/2006

Product

Point

- 3. Liquid substances or mixtures fulfilling the criteria for any of the following hazard classes or categories set out in Annex I to Regulation (EC) No 1272/ 2008:
- (a) hazard classes 2.1 to 2.4, 2.6 and 2.7, 2.8 types A and B, 2.9, 2.10, 2.12, 2.13 categories 1 and 2, 2.14 categories 1 and 2, 2.15 types A to F;
- (b) hazard classes 3.1 to 3.6, 3.7 adverse effects on sexual function and fertility or on development, 3.8 effects other than narcotic effects, 3.9 and 3.10;
- (c) hazard class 4.1;
- (d) hazard class 5.1.
- 40. Substances classified as flammable gases category 1 or 2, flammable liquids categories 1, 2 or 3, flammable solids category 1 or 2, substances and mixtures which, in contact with water, emit flammable gases, category 1, 2 or 3, pyrophoric liquids category 1 or pyrophoric solids category 1, regardless of whether they appear in Part 3 of Annex VI to that Regulation or not.

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 20/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

Contained substance

Point 75

Regulation (EU) 2019/1148 - on the marketing and use of explosives precursors

Not applicable

Substances in Candidate List (Art. 59 REACH)

On the basis of available data, the product does not contain any SVHC in percentage ≥ than 0,1%.

Substances subject to authorisation (Annex XIV REACH)

None

Substances subject to exportation reporting pursuant to Regulation (EU) 649/2012:

None

Substances subject to the Rotterdam Convention:

None

Substances subject to the Stockholm Convention:

None

Healthcare controls

Workers exposed to this chemical agent must not undergo health checks, provided that available risk-assessment data prove that the risks related to the workers' health and safety are modest and that the 98/24/EC directive is respected.

15.2. Chemical safety assessment

A chemical safety assessment has been performed for the following contained substances

STYRENE

ETHYL ACETATE

SECTION 16. Other information

Text of hazard (H) indications mentioned in section 2-3 of the sheet:

Flam. Liq. 2 Flammable liquid, category 2

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 21/23

M4111 - JOLLY - MASTICE PER MARMI - BIANCO

Flam. Liq. 3 Flammable liquid, category 3

Repr. 2 Reproductive toxicity, category 2

Acute Tox. 4 Acute toxicity, category 4

STOT RE 1 Specific target organ toxicity - repeated exposure, category 1

Asp. Tox. 1 Aspiration hazard, category 1
Skin Corr. 1B Skin corrosion, category 1B
Eye Irrit. 2 Eye irritation, category 2
Skin Irrit. 2 Skin irritation, category 2

STOT SE 3 Specific target organ toxicity - single exposure, category 3

Resp. Sens. 1 Respiratory sensitization, category 1
Skin Sens. 1A Skin sensitization, category 1A

Aquatic Chronic 3 Hazardous to the aquatic environment, chronic toxicity, category 3

H225 Highly flammable liquid and vapour.H226 Flammable liquid and vapour.

H361d Suspected of damaging the unborn child.

H302 Harmful if swallowed.H332 Harmful if inhaled.

H372 Causes damage to organs through prolonged or repeated exposure.

H304 May be fatal if swallowed and enters airways.H314 Causes severe skin burns and eye damage.

H319 Causes serious eye irritation.

H315 Causes skin irritation.

H335 May cause respiratory irritation.

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.

H317 May cause an allergic skin reaction.H336 May cause drowsiness or dizziness.

H412 Harmful to aquatic life with long lasting effects.

EUH071 Corrosive to the respiratory tract.

Use descriptor system:

PROC	1	Chemical production or refinery in closed process without likelihood of exposure or processes with equivalent containment conditions.
		· ·
PROC	10	Roller application or brushing
PROC	11	Non industrial spraying
PROC	3	Manufacture or formulation in the chemical industry in closed batch processes with occasional controlled exposure or processes with equivalent containment condition
PROC	4	Chemical production where opportunity for exposure arises
DD 0.0	-	, , , , ,
PROC	5	Mixing or blending in batch processes
PROC	8a	Transfer of substance or mixture (charging and discharging) at non-dedicated facilities

LEGEND:

- ADR: European Agreement concerning the carriage of Dangerous goods by Road
- ATE: Acute Toxicity Estimate
- CAS: Chemical Abstract Service Number
- · CE50: Effective concentration (required to induce a 50% effect)
- CE: Identifier in ESIS (European archive of existing substances)
- CLP: Regulation (EC) 1272/2008

Revision nr. 1

Dated 27/01/2022

First compilation Printed on 27/01/2022

Page n. 22/23

M4111 - JOLLY - MASTICE PER MARMI -**BIANCO**

- **DNEL: Derived No Effect Level**
- EmS: Emergency Schedule
- GHS: Globally Harmonized System of classification and labeling of chemicals
- IATA DGR: International Air Transport Association Dangerous Goods Regulation
- IC50: Immobilization Concentration 50%
- IMDG: International Maritime Code for dangerous goods
- IMO: International Maritime Organization
- INDEX: Identifier in Annex VI of CLP
- LC50: Lethal Concentration 50%
- LD50: Lethal dose 50%
- OEL: Occupational Exposure Level
- PBT: Persistent bioaccumulative and toxic as REACH Regulation
- PEC: Predicted environmental Concentration
- PEL: Predicted exposure level
- PNEC: Predicted no effect concentration
- REACH: Regulation (EC) 1907/2006
- RID: Regulation concerning the international transport of dangerous goods by train
- TLV: Threshold Limit Value
- TLV CEILING: Concentration that should not be exceeded during any time of occupational exposure.
- TWA: Time-weighted average exposure limit
- TWA STEL: Short-term exposure limit
- VOC: Volatile organic Compounds
- vPvB: Very Persistent and very Bioaccumulative as for REACH Regulation
- WGK: Water hazard classes (German).

GENERAL BIBLIOGRAPHY

- 1. Regulation (EC) 1907/2006 (REACH) of the European Parliament
- 2. Regulation (EC) 1272/2008 (CLP) of the European Parliament
- 3. Regulation (EU) 2020/878 (II Annex of REACH Regulation)
- 4. Regulation (EC) 790/2009 (I Atp. CLP) of the European Parliament
- 5. Regulation (EU) 286/2011 (II Atp. CLP) of the European Parliament
- 6. Regulation (EU) 618/2012 (III Atp. CLP) of the European Parliament
- 7. Regulation (EU) 487/2013 (IV Atp. CLP) of the European Parliament 8. Regulation (EU) 944/2013 (V Atp. CLP) of the European Parliament
- 9. Regulation (EU) 605/2014 (VI Atp. CLP) of the European Parliament
- 10. Regulation (EÚ) 2015/1221 (VII Atp. CLP) of the European Parliament
- 11. Regulation (EU) 2016/918 (VIII Atp. CLP) of the European Parliament
- 12. Regulation (EU) 2016/1179 (IX Atp. CLP)
- 13. Regulation (EU) 2017/776 (X Atp. CLP) 14. Regulation (EU) 2018/669 (XI Atp. CLP)
- 15. Regulation (EU) 2019/521 (XII Atp. CLP)
- 16. Delegated Regulation (UE) 2018/1480 (XIII Atp. CLP)
- 17. Regulation (EU) 2019/1148
- 18. Delegated Regulation (UE) 2020/217 (XIV Atp. CLP)
- 19. Delegated Regulation (UE) 2020/1182 (XV Atp. CLP)
- 20. Delegated Regulation (UE) 2021/643 (XVI Atp. CLP)
- 21. Delegated Regulation (UE) 2021/849 (XVII Atp. CLP)
 The Merck Index. 10th Edition
- Handling Chemical Safety
- INRS Fiche Toxicologique (toxicological sheet)
- Patty Industrial Hygiene and Toxicology
- N.I. Sax Dangerous properties of Industrial Materials-7, 1989 Edition
- IFA GESTIS website
- ECHA website
- Database of SDS models for chemicals Ministry of Health and ISS (Istituto Superiore di Sanità) Italy

Note for users:

The information contained in the present sheet are based on our own knowledge on the date of the last version. Users must verify the suitability and thoroughness of provided information according to each specific use of the product.

This document must not be regarded as a guarantee on any specific product property.

Revision nr. 1

Dated 27/01/2022 First compilation

Printed on 27/01/2022

Page n. 23/23

M4111 - JOLLY - MASTICE PER MARMI -**BIANCO**

The use of this product is not subject to our direct control; therefore, users must, under their own responsibility, comply with the current health and safety laws and regulations. The producer is relieved from any liability arising from improper uses. Provide appointed staff with adequate training on how to use chemical products.

CALCULATION METHODS FOR CLASSIFICATION

Chemical and physical hazards: Product classification derives from criteria established by the CLP Regulation, Annex I, Part 2. The data for evaluation of chemical-physical properties are reported in section 9.

Health hazards: Product classification is based on calculation methods as per Annex I of CLP, Part 3, unless determined otherwise in Section 11. Environmental hazards: Product classification is based on calculation methods as per Annex I of CLP, Part 4, unless determined otherwise in Section 12.

Training for workers:

Worker training should include content, updates and duration depending on the risk profiles assigned to the business sectors they belon